
N U C L E A R  
PHYSICS B 

ELSEVIER Nuclear Physics B441 (1995) 197-214 

QCD constraints on the shape of polarized quark 
and gluon distributions 

Stanley J. Brodsky a, Matthias Burkardt b,1, Ivan Schmidt c 
a StanfordLinearAccelerator Center, Stanford University, Stanford, CA 94309, USA 

b Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

c Universidad Federico Santa Maria, Casilla llO-V, Valparaiso, Chile 

Received 8 February 1994; revised 29 December 1994; accepted 29 December 1994 

Abstract 

We develop simple analytic representations of the polarized quark and gluon distributions in 
the nucleon at low Q2 which incorporate general constraints obtained from the requirements of 
color coherence of gluon couplings at x ~ 0 and the helicity retention properties of perturbative 
QCD couplings at x ~ 1. The unpolarized predictions are similar to the D~ distributions given by 
Martin, Roberts, and Stirling. The predictions for the quark helicity distributions are compared 
with polarized structure functions measured by the E142 experiment at SLAC and the SMC 
experiment at CERN. 

I. Introduction 

Measurements of polarization correlations in high momentum transfer reactions can 

provide highly sensitive tests of the underlying structure and dynamics of hadrons. The 

most direct information on the light-cone momentum distributions of helicity-aligned 
and helicity-anti-aligned quarks in nucleons is obtained from deep inelastic scattering of 
polarized leptons on polarized targets. Recent fixed-target measurements, including the 
CERN SMC muon-deuteron experiment [1], the electron-He 3 and electron-proton 
experiments E142 and E143 at SLAC [2], and the SMC muon-proton experiment [3] are 
now providing important new constraints on the proton and neutron helicity-dependent 
structure functions. 
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Although the Q2-evolution of structure functions is well predicted by perturbative 
QCD, the initial shape of these distributions reflects the non-perturbative quark and 
gluon dynamics of the bound-state solutions of QCD. Nevertheless, it is possible to 
predict some aspects of the shape of the input nucleon structure functions from 
perturbative arguments alone. In this paper, we will develop simple analytic representa- 
tions of the quark and gluon helicity distributions which incorporate general constraints 
obtained from the color coherence of the gluon couplings at x ~ 0, and the helicity 
structure of perturbative QCD couplings at x ~ 1. Since we work at the bound-state 
scale, we can directly impose global sum rules and symmetries such as the axial 
coupling constraint Au -- Ad = gA, from neutron beta decay. The parameterizations we 
use have the minimal number of parameters needed to satisfy all of the constraints. The 
predicted forms for the quark and gluon helicity distributions, Aq(x)  = q+(x) - q - ( x )  
and ZIG(x)= G+(x) - G - ( x ) ,  should provide useful guides to the expected shapes of 
the polarized structure functions and an understanding of how the helicity content of the 
nucleon is distributed among its constituents. Eventually these fundamental distributions 
should be computable using non-perturbative methods such as lattice gauge theory or 
light-cone hamiltonian diagonalization. 

The structure functions discussed in this paper are meant to reflect the intrinsic 
bound-state structure of the nucleons, and thus they strictly apply only at low resolution 
scales Q2 < Q2 where QCD evolution can be neglected. They can be used at large Q2 

as the input distributions for perturbative QCD evolution, as in the analyses of Ref. [4]. 
However, as we discuss below, the actual implementation of the evolution program must 
take into account the fact that for x ~ 1 the bound-state quark which is struck in deep 
lepton inelastic scattering is far off-shell, thus suppressing its gluon radiation. 

The polarized quark and gluon distributions Gq/u(X, A, Q) and Gg/h(X, A, Q) of a 
hadron are most simply represented as probability distributions determined by the 

light-cone wavefunctions qJn(Xi, k j_ i, Ai), where E~= 1 xi = 1, and ]~'= l k • i = 0 ±. The 
square of the invariant mass of an n-particle Fock state configuration in the wavefunc- 
tion is ~,,2 = E~,= ,[(k2i + m2)/xi]. Thus the kinematical regime where one quark has 
nearly all of the light-cone momentum x ~ 1, and the remaining constituents have 
x i ~ O, represents a very far off-shell configuration of a bound-state wavefunctions. In 
the limit x ~ 1, the Feynman virtuality of the struck parton in a bound state becomes far 
off-shell and space-like: k 2 - m 2 = x ( M 2 - ~ ¢ ' 2 )  ----~ - / z 2 / ( 1 - x ) ,  where /z is the 
invariant mass of the system of stopped constituents. If one assumes that the bound-state 
wavefunction of the hadron is dominated by the lowest invariant mass partonic states, 
then the constituents can attain far off-shell configurations only by exchanging hard 
gluons; thus the leading behavior at large virtuality can be computed simply by iterating 
the gluon exchange interaction kernel [5-7]. This conforms to the usual ansatz of 
perturbative QCD that hard perturbative contributions dominate amplitudes involving 
high momentum transfer compared to the contributions arising from non-perturbative 
sources. 

Thus, because of asymptotic freedom, the leading order contributions in c~s(k ~) to the 
quark and gluon distributions at x ~ 1 can be computed in perturbative QCD from 
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minimally connected tree graphs. For example, in the case of the nucleon structure 

functions, the dominant amplitude is derived from graphs where the three valence quarks 
exchange two hard gluons. The tree amplitude is then convoluted with the nucleon 
distribution amplitude qb(x i, k 2) which is obtained by integrating the valence three-quark 
nucleon wavefunction ~t3(Xi, k± i, Ai), over transverse momenta up to the scale k 2 [7]. 
The dk± d~b azimuthal loop integrations project out only the L z = 0 component of the 
three-quark nucleon wavefunction. Thus, in amplitudes controlled by the short distance 
structure of the hadron's valence wavefunction, orbital angular momentum can be 
ignored, and the valence quark helicities sum to the hadron helicity. 

The limiting power-law behavior at x ~ 1 of the helicity-dependent distributions 

derived from the minimally connected graphs is 

Gq/n ~ ( 1 - x )  p, 

where 

p =  2 n -  1 + 2AS,. 

Here n is the minimal number of spectator quark lines, and ASz = IS q - S~ I = 0 or 1 
for parallel or anti-parallel quark and proton helicities, respectively [5]. This counting 

rule reflects the fact that the valence Fock states with the minimum number of 
constituents give the leading contribution to structure functions when one quark carries 
nearly all of the light-cone momentum; just on phase-space grounds alone, Fock states 
with a higher number of partons must give structure functions which fall off faster at 
x ~ 1. The helicity dependence of the counting rule also reflects the helicity retention 
properties of the gauge couplings: a quark with a large momentum fraction of the hadron 
also tends to carry its helicity. The anti-parallel helicity quark is suppressed by a relative 
factor (1 - x) 2. Similarly, in the case of a splitting function such as q ~ qg or g ~ ~lq, 
the sign of the helicity of the parent patton is transferred to the constituent with the 
largest momentum fraction [8]. The counting rule for valence quarks can be combined 
with the splitting functions to predict the x ~ 1 behavior of gluon and non-valence 
quark distributions. In particular, the gluon distribution of non-exotic hadrons must fall 
by at least one power faster than the respective quark distributions. 

The counting rules for the end-point behavior of quark and gluon helicity distribu- 
tions can also be derived from duality, i.e., continuity between the physics of exclusive 
and inclusive channels at fixed invariant mass [9]. As shown by Drell and Yan [10], a 
quark structure function Gq/H ~ (1 - x) 2n- 1 at x -~ 1 if the corresponding form factor 
F(Q 2) ,-, (1 /Q2)  n at large Q2. Recent measurements of elastic electron-proton scatter- 
ing at SLAC [11] are compatible with the perturbative QCD predictions [12] for both the 
helicity-conserving FI(Q 2) and helicity-changing Fz(Q 2) form factors: Q4FI(Q2) and 
Q6F2(Q2) become approximately constant at large Qz. The power-law fall-off of the 
form factors corresponds to the helicity-parallel and helicity-anti-parallel quark distribu- 
tions behaving at x ~ 1 as (1 - x) 3 and (1 - x) s, respectively, in agreement with the 
counting rules. The leading exponent for quark distributions is odd in the case of 
baryons and even for mesons in agreement with the Gribov-Lipatov crossing rule [13]. 
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The counting rule predictions for the quark and gluon distributions are relevant at low 

momentum transfer scales Q0 ~ AOCD in which the controlling physics is that of the 
hadronic bound state rather than the radiative corrections associated with structure 

function evolution. At the hadronic scale one can normalize the non-singlet quark 
helicity content of the proton and neutron using the constraint from /3 decay [14]: 

gA 
AU -- Ad = - -  = 1.2573 + 0.0028. 

gv  

where Aqi (x )  = q ~ ( x )  - qT (x ) ,  with i = u, d, s, is the difference of the helicity-aligned 

and helicity-anti-aligned quark distributions in the proton, and Aqi = f~ d x  Aqi (x)  is 
the integrated moment. (In the standard notation, q+(x ,  Q ) =  Gq/p(X, Aq = Ap, Q ) +  

G~/p(x, kq = Ap, Q) so that both quark and anti-quark contributions are included.) In 
addition, if one assumes SU(3) flavor symmetry, hyperon decay also implies a polarized 
strange quark component in the proton wavefunction [15,16], 

Au + Ad - 2 As 
= 0.39. 

Thus only one normalization is left undetermined. 

The presence of polarized gluons in the nucleon wavefunction implies that polarized 

strange quarks contribute to the nucleon helicity-dependent structure functions at some 
level. There is also evidence from neutrino-proton elastic scattering that the proton has 
a significant polarized strange quark content [15]. Our parameterization of the polarized 
strange quark distributions with a significant helicity fraction A s -  0.10 and a small 

momentum fraction ( x  s) = 0.035. The shape represents the sum of contributions from 
radiatively generated s + g quarks as well as intrinsic strange quarks, intrinsic to the 

nucleon bound states. 

The helicity-dependent structure function gt(x ,  Q2) measured in deep inelastic 
polarized-lepton-polarized-proton scattering can be identified in the Bjorken scaling 

region with the quark helicity asymmetry: 

gl(  x ,  Q 2 ) =  l ~_,e2 Aq(  x ' QZ). 
q 

The first moment of the proton-neutron difference has zero anomalous dimension and 
satisfies the Bjorken sum rule [8]: 

So 1 ) 1 dx[  g~(x ,  Q2) _ g~(x ,  QZ)] = 6 gv  ~ "'" 

where the last factor represents the radiative corrections from hard gluon interactions in 
the electron-quark scattering process. 2 Thus the QCD radiative corrections 3 to the 

2 For recent analyses of the radiative corrections to the Bjorken sum rule see Ref. [17]. 
3 An analysis of the evolution of the helicity-dependent quark and gluon structure functions is given in 

Ref. [181. 
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helicity-dependent structure functions can modify the shape of the distributions, within 

the global constraint of the Bjorken sum rule. 
At high Q2, the radiation from the struck quark line increases the effective power-law 

fall-off (1 - x )  v of structure functions relative to the underlying quark distributions: 
4 2 Ap = ( 4 C F / f l l )  log[log(Q2/A2)/log(Q2/A2)], where C F = -~ and f l l  = 11 - gnf. The 

counting rule predictions for the power p thus provide a lower bound for the effective 
exponent of quark structure functions at high Q 2 >  Q2. However, in the end-point 
region x ~ 1, the struck quark is far off-shell and the radiation is quenched since one 
cannot evolve Q2 below Q02 = k} = - [ / z 2 / ( 1 -  x)], the Feynman virtuality of the 
struck parton [19]. Furthermore, the integral of the gl structure function is only affected 
by QCD radiative corrections of order as(Q2)/Tr. 

Thus PQCD can give useful predictions for the power-law fall-off of helicity-aligned 
and anti-aligned structure functions at x ~ 1. Higher order contributions involving 
additional hard gluon exchange are suppressed by powers of as(kF2). Further iterations 

of the interaction kernel will give factors of fractional powers of log(1 - x) analogous to 
the anomalous dimensions log VnQ2 which appear in the PQCD treatment of form 
factors at large momentum transfer [12]. This is in contrast to super-renormalizable 
theories such as QCD(1 + 1) where the power-law behavior in the end-point region is 
modified by all-order contributions [20]. 

The fact that one has a definite prediction for the x ~ 1 behavior of leading twist 
structure functions is a powerful tool in QCD phenomenology, since any contribution 
that does not decrease sufficiently fast at large x is most likely due to coherent 
multi-quark correlations. As discussed in Ref. [21], such contributions are higher twist, 
but they arise naturally in QCD and are significant at fixed (1 - x ) Q  2. Such coherent 
contributions are in fact needed in order to explain the anomalous change in polarization 
seen in pion-induced continuum lepton-pair and hadronic J/~b production experiments 

at high x F [22]. 
At large x the perturbative QCD analysis predicts "helicity retention" - i.e., the 

helicity of a valence quark with x ~ 1 will match that of the parent nucleon. This result 
is in agreement with the original prediction of Farrar and Jackson [6] that the helicity 
asymmetry Aq(x) approaches 1 at x ~ 1. We also predict, in agreement with Ref. [6], 

3 that the ratio of unpolarized neutron to proton structure functions approaches the value 
for x ~ l .  

In the following sections we will analyze the shape of the polarized gluon and quark 
distributions in the proton. First we will study the behavior of the gluon asymmetry 
AG(x)/G(x) (polarized over unpolarized distributions) at small values of x, where it 
turns out to be proportional to x with a coefficient approximately independent of the 
details of the bound-state wavefunction. We then write down a simple model for the 
gluon distributions which incorporates the counting rule constraints at x ~ 1. The same 
is done for the up, down and strange quark distributions. The extrinsic and intrinsic 
strange quark distributions are also discussed, paying special attention to the inclusive- 
exclusive connection with the strange quark contribution to the proton form factors. 
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2. Helicity-dependent gluon distributions 

The angular momentum of a fast-moving proton has three sources: the angular 
momentum carried by the quarks, the angular momentum carried by the gluons, and the 
orbital angular momentum carried by any of the constituents. Angular momentum 
conservation for J~ at a fixed light-cone time implies the sum rule [23] 

½( Au + Ad + As) + AG + (L z) =1~. (2.1) 

Here A G -  f~ dx AG(x) is the helicity carried by the gluons, where aG(x) is the 
difference between the helicity-aligned and anti-aligned gluon distributions G+(x) and 
G-(x) ;  the unpolarized gluon distribution G(x) is the sum of these two functions, 
G ( x ) -  G+(x)+ G-(x). The corresponding definitions for the quark distributions are 
Aq(x) = q+(x) - q-(x)  and q(x) = q+(x) + q-(x)  with q = u, d, s. By definition, 
the anti-quark contributions are included in Aq(x) and q(x). As emphasized by Ma 
[24], the helicity distributions measured on the light-cone are related by a Wigner 
rotation (Melosh transformation) to the ordinary spins S~ of the quarks in an equal-time 
rest-frame wavefunction description. Thus, due to the non-collinearity of the quarks, one 
cannot expect that the quark helicities will sum simply to the proton spin. 

In this paper we shall present model forms for the gluon distribution functions 
AG(x) and G(x) for nucleons which incorporate the known large-x counting rule 
constraints: 

G + ( x ) - + C ( 1 - x )  4 ( x - +  1), (2.2) 

G-(x )  ~ C ( 1  - - X )  6 (X --0 1). (2.3) 

We will also incorporate a constraint on the behavior of the gluon asymmetry ratio 
AG(x)/G(x) for small x: 

G(x)  proton " 4  "~ ( x --+ 0). (2.4) 

This last theoretical constraint will be demonstrated below. Here ( l / y )  stands for the 
first inverse moment of the quark light-cone momentum fraction distribution in the 
proton lowest Fock state. For this state we expect ( l / y )  = 3. 

A simple form for baryon gluon distributions, which incorporates the limiting 
behaviors presented above, is 

N 
AG(x) = - - [1  -- (1 -- x)2] (1 - x )  4, 

x 
(2.5) 

N 
G ( x ) = - - [ I + ( 1 - x ) 2 ] ( 1 - x )  4. 

X 

In this model the momentum fraction carried by the gluons in the proton is (Xg) - 
12 f~ dxxG(x)= ~N, and the helicity carried by the gluons is A G -  f~ dx AG(x) 

= ~o N. Taking the momentum fraction (Xg) to he ½, we predict AG = 0.54. 
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Such large values for the gluon momentum fraction are inconsistent with the 
assumption that the proton has a dominant three-quark Fock state probability; a 
self-consistent approach thus requires taking into account gluon radiation from the full 
quark and gluon light-cone Fock basis of the nucleon. Our main emphasis here is to 
predict the characteristic shapes of the polarized quark and gluon distributions. The 
large-x regime is clearly dominated by the lowest particle-number Fock states. We thus 
expect the qualitative features of the model to survive in a more rigorous approach; in 
particular, it is apparent from the structure of the model that the gluon helicity fraction 
will be of the same order of magnitude as the gluon momentum fraction. 

The prediction that AG = 0.5 is phenomenologically interesting. If one also accepts 
the experimental suggestion from EMC that the quark helicity sum Au + Ad is small, 
then this implies that gluons could carry a significant fraction of the proton helicity Jz = ½ 
of the same size as the momentum fraction carried by the gluons. However, one also 
expects significant orbital angular momentum L z which arises, for example, from the 
finite transverse momentum associated with the q ~ qg gluon emission matrix element. 

We now proceed to prove Eq. (2.4) for the low-x behavior of the asymmetry 
AG(x)/G(x). In this region the quarks in the hadron radiate coherently, and we must 
consider interference between amplitudes in which gluons are emitted from different 
quark lines. An analysis of this type was first presented in Ref. [25], and in this note we 
extend and correct some of the results of that paper. 

As an example, we first analyze the helicity content of positronium, where we can 
ignore internal transverse momenta and non-collinearity. Consider the ortho-positronium 
two-fermion Jz = 1 Fock state in which the particles have helicities + +.  Following the 
calculation of Ref. [25], we obtain 

or,ho j_+ ; 2 x  (x--, 0). (2.6) 

In the case of para-positronium (and also for Jz = 0 ortho-positronium), in which we 
start with a Fock state with helicities + - ,  the result is ziG(x) = 0. This is because for 
every diagram in G+(x) there is a corresponding diagram in G - ( x ) ,  but with the 
helicities of all the particles reversed. 

We now apply a similar analysis to the gluon distribution in the nucleon. We start 
with a three-quark Fock state in which the quarks have helicities + + + as would be 
appropriate for the helicity content of an isobar state zi with Jz 3 ---7- Then the result 
found in Ref. [25], i.e. (ziG(x) 

a(x)  ) A jz=3/2, ' (2.7) 

follows. 
In the nucleon case, however, we start with a three-quark Fock state with helicities 

+ + - .  Thus clearly there is a cancellation between the squared terms in which the 
gluon is emitted from one of the positive helicity quarks versus the contributions in 
which the gluon is emitted by a negative helicity quark. The interference terms work 
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similarly, ensuring a finite result for both G(x) and ziG(x) at zero k I , just as in the 
case of photon distributions in positronium. Then the positive helicity quarks have a 
dominant G+(x) and contribute positively to ziG(x); similarly, the negative helicity 
quarks contribute negatively to ziG(x). To see this more clearly, consider the photon 

1 emitted by a single electron with Jz = + 2. Then G~/e(X) = 1 /x  and G~/e(X) = (1 - 
x)2/x. Thus z iG(x) /G(x)= x at x ~ 0 with unit coefficient in this case. The sign 

1 reverses for an electron with Jz = - ~. 
The generated gluon asymmetry distribution in the nucleon at low x is then given by 

1 
Eq. (2.4). The extra factor of ~ is due to the fact that all the quarks contribute positively 
to G(x), but they give contributions proportional to the sign of their helicity in ziG(x). 
The main assumption setting the value of the gluon asymmetry at x ~ 0 is the estimated 
value of the inverse moment ( l / y } .  For realistic wavefunctions this expectation value 
may receive very large (possibly divergent) contributions from near y = 0. However, 
one must be careful at this point because in deriving Eq. (2.4) we assumed that x << y. 
In order to be consistent with this assumption we will perturb around a constituent quark 

1 wavefunction which is strongly peaked around y = (y }  = 7. We have furthermore 
assumed for simplicity that (y}  is the same for all valence quarks, although this is 
inconsistent with results from QCD sum rules [26]. (One could improve the estimate for 
( l / y )  by allowing for different momentum fractions for the helicity-up and helicity- 
down quarks. This would evidently reduce ziG, since it is known that ( y )  is larger for 
helicity-parallel quarks. Furthermore, in QCD we expect that higher Fock states will 
contribute to reduce the value of ( y  } away from ½, which would be the expected value 
if only the three-quark valence Fock state was present.) 

3. Helicity-dependent quark distributions 

In this section we shall construct a simple polynomial model for the helicity-depen- 
dent quark distributions in the proton and neutron. 

As we have discussed in the previous sections, at x ~ 1 PQCD predicts that the 
helicity-parallel quark distribution q+(x)  is enhanced relative to the helicity-anti-paral- 
lel quark distribution q - ( x )  by two powers of 1 - x .  The property of helicity retention 

at large x is a direct consequence of the gauge theory couplings between quarks and 
gluons. For the valence quarks in a nucleon the counting rules predict 

q÷(x)  ~ (1 - - X )  3 ( X  "'> 1) (3.1) 

and 

q - ( x ) ~ ( 1 - x )  5 ( x ~ l ) .  (3.2) 

The case of the non-valence strange quarks is somewhat more complex and will be 
discussed in detail in the next section. The result is 

s + ( x ) ~ ( 1 - x )  5 ( x ~ l ) ,  (3.3) 

s - ( x )  ~ (1 - x )  7 (x---> 1). (3.4) 
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For x ~ 0 the helicity correlation disappears since the constituent has infinite rapidity 

Ay -- log x relative to the nucleon's rapidity. 
The strange quark distribution in a nucleon can arise from both intrinsic and extrinsic 

contributions. The intrinsic contribution is associated with the multiparticle Fock state 
decomposition of the hadronic wavefunction, and it is essentially of non-perturbative 

origin. This is in contrast to the extrinsic component, which arises from sg pair 
production from a gluon emitted by a valence quark and is associated with the self-field 

of a single quark in the proton. From evolution and gluon splitting, the extrinsic strange 

contributions are known to behave as 

s~+(x) ~ ( l - x )  5 ( x ~  1), (3.5) 

Se(X ) ~ ( l - x )  7 ( X ~ I ) .  (3.6) 

The Drell-Yan inclusive-exclusive connection relates the high-Q 2 behavior of the 
hadronic form factors to the large-x limit of the quark distribution functions; i.e. 

F(Q 2) 02-~, 1 x-,1 (Q2)" '=' Gq/p , (1 - x )  2n-l+2asz, (3.7) 

where AS z = 0 or 1 for parallel or anti-parallel quark and proton helicities, respectively. 
If we naively apply this prescription to the extrinsic strange quark component, we would 

predict that the strange quark contribution to the electromagnetic proton form factor 

should fall as 1/Q 6, since in this case n = 3. But a direct calculation of the strange 

quark contribution to either the axial or vector form factor of the nucleon gives only a 
nominal 1/Q 4 behavior, which is the same power-law fall-off as the valence quark 
contribution. In the leading order calculations the loop integrals connecting a hard sg 
loop to a valence quark all have momenta l = O(Q), thus producing radiative correc- 

tions of order a~(Q), to the exclusive amplitude with N = 2 (axial) or N = 3 (vector), 
rather than extra powers of 1/Q z [7]. The solution to this apparent contradiction is that 

we should apply the inclusive-exclusive connection for the strange quark contributions 

to a transition form factor connecting an initial state with three quarks (uud) to a final 

state in which a strange pair has been created (uudsg), as in the transition form factor 

p ~ AK, at fixed final-state mass. Since the internal hard-scattering matrix element T H 
for (uud) + 3' * ~ sudug has three off-shell fermion legs, this transition form factor falls 
off as (1/Q2) 3, and it correctly satisfies the inclusive-exclusive connection (n = 3). 

One can also consider the case where Q2 and the final-state mass are both large, but 
there is a K and A in the final state. This again corresponds to a ~ (1 - x )  5 structure 

function. In the case of the transition p ~ p$ ,  there is a color mismatch in Tn at lowest 
order. Thus this amplitude should be suppressed (Zweig rule) by an extra power of 
as(Q2). Of course all of this holds for the analogous charm systems as well. 

The intrinsic strange components are associated with Fock states having at least five 
particles; the distributions thus have the behavior 

s+(x)  ~ (1 - x )  7 ( x  ~ 1), (3.8) 

s~-(x) ~ ( l - x )  9 ( x ~  1), (3.9) 
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which corresponds to n = 4 in the spectator quark counting rules. It also satisfies the 
inclusive-exclusive connection, since the intrinsic contribution to the form factor falls as 
( 1 / 0 2 )  4 . 

For the complete parameterization we shall adopt the canonical forms: 

u + ( x ) =  - ~ [ A u ( e - x ) 3  + B u ( 1 - x ) 4 ] ,  

d+(x)=-~-g[ad(1 

1 
u - ( x )  = 7[Cu(1 

1 
d-(x) = - -  [Co(1 

X a 
1 

s+(x)=--[As(1 
X a 
1 

= - -  [Cs(1 s - ( x )  x ° 

where we require 

--X) 3 +Bd(1 -- x)4],  

- x ) 5 + D u ( 1 - x ) 6 ] ,  

- x )  5 +Dd(1 -- x)6],  

- - x )  5 +Bs(1 --X)6] , 

- x )  7 +Ds(1 - x)8],  

Aq + Bq = Cq '1- Oq 

to ensure the convergence of the helicity-dependent sum rules. Thus in our model, the 
Regge behavior of the asymmetry Aq(x) ~ x -~  is automatically one unit less than the 

unpolarized intercept: a R = a -  1. Isospin symmetry at low x (Pomeron dominance) 
also requires 

A u + B .  + C u + D  u = A  d + B  d + C d + D  d. 

We emphasize that these distributions include both the quark and anti-quark contribu- 

tions. 
Our parameterization of the helicity-dependent quark distributions is close in spirit to 

the parameterization D~ for the unpolarized quark and gluon distributions given by 
Martin, Roberts, and Stirling [27]. The MRS parameterizations are a good match to our 
unpolarized forms q(x)  = q + (x )  + q -  (x )  since the MRS forms combine counting rule 
constraints with a good fit to a wide range of perturbative QCD phenomenology. We 

find that choosing the effective QCD Pomeron intercept a = 1.12 allows a good match 
to the unpolarized quark distributions given by the MRS parameterization D~ at Q2 = 4 
GeV 2 over the range 0.001 < x < 1. It also predicts an increasing structure function 
Fz(x ' Q2) for x < 10 -3, as suggested in the recent data from HERA [28]. Thus we 
predict a R = 0.12 for the helicity-changing reggeon intercept. The momentum fraction 
carried by the quarks (and anti-quarks), ( X q ) =  f~ dxxq(x), where q(x)-  q+(x)+ 
q - ( x ) ,  is assumed to be ~ 0.5. 

A combined analysis [15] of the SLAC and EMC [29,30] polarized electron-proton 
data provides the constraint 

f dx gPl(X) = 0.112 ___ 0.009 _+ 0.019. 
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If one uses the central value together with the constraints from nucleon and hyperon 

decay and includes radiative corrections of O((~s/~-)  3) then one obtains the following 
values for the proton helicity carried by the different quarks [15]. 

Au = 0.83 ___ 0.03, Ad = - 0 . 4 3  ___ 0.03, z~s = --0.10 ___ 0.03, (3.10) 

at the renormalization scale Q2 ___ 10 GeV 2. Since these values for the Aq are obtained 

after removing the deep inelastic radiative corrections, we can use them as the initial 

phenomenological inputs for the proton; the neutron distributions then follow from 

isospin symmetry. The small value for the total quark helicity AZ = Au + Ad + As = 

0.31 + 0.07 is consistent with large N c predictions in QCD [31], and it is about half of 
the value A ~  = 0.75 expected in the relativistic three-quark constituent model for the 

nucleon without dynamical gluons [32]. As we shall show below, the gluon helicity 

fraction Ag scales closely with the gluon momentum fraction (Xg). 
The u(x )  and d ( x )  parameterizations have eight parameters which we will fix using 

the following eight conditions: three conditions arise from the requirement that the sum 
rules converge at x ~ 0; two conditions come from the values of Au and Ad; one 

condition follows by imposing the SU(6) large-x relation A u = 5Ad; one condition is 

obtained from the empirical value of the Gottfried sum S G = f dx½[u(x)  - d(x)] = 

0.235 [33]; the final condition is obtained from the sum of momentum fractions carried 
by the quark and anti-quark, x u + x a = 0.521 [27]. It is straightforward to find parame- 

ters for the polynomial forms which are consistent with the above inputs: 

A u = 3.784, a d = 0.757, (3.11) 

Bu = -3 .672 ,  Bd = --0.645, (3.12) 

C u = 2.004, C d = 3.230, (3.13) 

Du = -  1.892, Dd = -3 .118 .  (3.14) 

With this set of parameters, the respective quark momentum fractions are 

(Xu) = 0.331, ( x  d) = 0.190. (3.15) 

The predicted distributions xu(x) ,  xd(x ) ,  zad(x), and A u ( x )  are shown in Figs. la  and 
lb. In each case both the quark and anti-quark contributions are included. The simple 

polynomial forms represent a simple parameterization of the non-perturbative polarized 
and unpolarized quark distributions which satisfy the known theoretical constraints at 

large and small x and the empirical sum rules. We also show a comparison of the 
unpolarized distributions with the MRS D~ phenomenological parameterizations. The 
agreement is quite reasonable. The differences in the shapes of the distributions can be 
attributed to the effects of perturbative QCD evolution. 

Notice that A d ( x ) =  d + ( x ) -  d - ( x )  is positive at large x (which follows from 
A u = 5Ad), and negative at small to moderate values of x. We thus predict that A d ( x )  

will change sign and go through zero at some physical value for x. With the above 
parameterization the zero of A d ( x )  occurs at x = 0.489. 

In the case of the strange quark plus strange anti-quark distributions, we have four 
parameters and three conditions: one from the convergence of sum rules, one from the 
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Fig. 1. Model predictions for the non-perturbative polarized Aq(x) = q÷ ( x ) -  q-  (x) and unpolarized quark 
xq(x) = x[ q+(x)+ q-(x)] distributions inthe proton. The polynomial forms satisfy sum rule and dynamical 
constraints. The leading Regge behavior at x ~ 0 has the intercept cz = 1.12. By definition both quark and 
antiquark contributions are included. Comparison with the MRS D~ parameterization for the unpolarized 
quark distributions [27] are also shown. (a) u(x) distributions, (b) d(x) distributions, (c) s(x) distributions. 

value  o f  As;  and one  f rom the m o m e n t u m  fract ion carried by strange plus anti-strange 

quarks x S = 0.035 [34]. This  leaves  us wi th  one unknown,  which  we  choose  to Cs. The  

three constraints give  the solut ion set 

A s = - 0 . 6 9 8 0  + 0 .9877Cs,  B~ = 0 .8534 - 1 .1171C s, 

D s = 0.1551 - 1.1294C~. (3 .16 )  
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~ xO(X)MRS 
21 ~\ Ag(x) 

0 0.5 1.0 
X 

Fig. 2. Predictions for the non-perturbative polarized AG(x)=  G+(x)  - G - ( x )  and unpolarized gluon 
xG(x ) = x[ G + ( x )+  G-  (x)] distributions in the proton. The polynomial forms satisfy sum rule and dynamical 
constraints. The leading Regge behavior at x ---> 0 has the intercept Otg = 1.12. Comparison with the MRS D~ 
parameterization for the unpolarized gluon distributions [27] is also shown. 

Because of the probabilistic interpretation of parton distribution functions, s+(x) and 
s - (x )  must both be non-negative functions of  x, which implies the rather stringent 

bounds 

0.7067 < C s < 1.2013. 

Within these bounds, gl(x) is practically independent of Cs; to be definite, we chose 
Cs = 1. (We could have taken any other value consistent with the inequalities 4.) We 

compare our simple parameterization to the MRS D~ parameterization in Fig. lc. The 

MRS distribution which gives an approximate realization of the data rises faster at low x 
than our model. This could be attributed to the need to impose a higher Pomeron 

intercept, or the the effects of  QCD evolution. 
We can also find parameterizations for the polarized gluon distributions which are 

consistent with the x ---> 0 and x ~ 1 helicity constraints, as well as the MRS unpolar- 

ized gluon distribution: 

1 
G + ( x ) = - - [ a g ( 1 - x )  4 + Bg(1 - x)5] ,  (3 .17)  XOtg 

1 
G - ( x )  = - - [ A g ( 1  - x )  6 + B g ( 1  - x ) 7 ] .  (3 .18)  

Xag 

This form automatically incorporates the coherence constraint, Eq. (2.4). We shall 
assume that ag = c~ = 1.12 so that the pomeron intercept is identical for quark and gluon 
distributions. The parameters set Ag = 2 and Bg = - 1 . 2 5  gives an unpolarized gluon 
distribution G(x)= G+(x)+ G-(x)  similar to the phenomenological D~ gluon distri- 
bution given by MRS (see Fig. 2). The momentum carried by the gluons in the nucleon 
using the above simple form is (Xg)  = 0.42. (The gluon and light quark and anti-quark 
distributions then almost saturate the momentum sum rule.) The gluon helicity content 

4 For an alternative parameterization of the strange quark distributions, see Ref. [35]. 
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for the above parameterization is AG = 0.45. As shown in the figure, the shape of the 
polarized distribution AG(x) given by the above parameterization is almost identical to 

xG(x). 
Alternatively, if we take ag = 1, then the parameter set Ag = 0.2381 and Bg = 1.1739 

again gives the same values ( X g ) =  0.42 and AG = 0.45 as above. In this case, the 

resulting shape unpolarized distribution G(x)= G+(x)+ G-(x) is indistinguishable 
from the phenomenological D~ gluon distribution given by MRS. 

Although there is some experimental information about the unpolarized gluon 

distribution, this is not the case for the polarized gluon distribution. It is important to test 

these distributions directly, for example in processes such as J /q ,  production in 
polarized ep and pp collisions [35]. 

4. Polarized structure functions 

In this section we will use the polynomial model forms for Aq(x) and q(x) to 
compute the polarized helicity structure functions of nucleons: 

g~P(x) = ½ [ } a u ( x )  + l a d ( x )  + } a s ( x ) ]  (4.1) 

and 

g~n(x) = ½ [ 4 a d ( x )  + 1Au(x )  + } a s ( x ) ] ,  (4.2) 

and compare the results to the recent experiments. (Note that Aq(x) refers to the 

combined asymmetries from both quarks and anti-quarks in the proton.) A precise 
prediction requires the inclusion of QCD evolution. Here we will, as in ReL [15], simply 

include the normalization factor Noc D = 1 - as/~r --~ 0.92 arising from QCD radiative 
corrections. The Bjorken sum rule for the difference of proton and neutron quark 

helicities is automatically satisfied. The Ellis-Jaffe sum rule for the nucleon quark 

helicity is violated by the model due to the presence of the strange quark contributions 
As. 

We have emphasized that the dynamics of QCD implies helicity retention: the quark 

with x close to 1 has the same helicity as the proton. Thus all of the structure function 
asymmetries become maximal at x ---> 1, and the ratio of unpolarized proton and neutron 
structure functions can be predicted. 

According to the standard SU(6) flavor and helicity symmetry, the probabilities to 
find u and d quarks of different helicities in the proton's three-quark wavefunction are: 
p (u  +) = s p (d  +) = 1 P ( u - ) =  1 P ( d - ) =  z ~, ~, ~, ~ [37]. Thus the usual expectation from 

2 SU(6) symmetry is F2(n)/F2(p) = 5 for all x. As Farrar and Jackson pointed out [6], 
this naive SU(6) result cannot apply to the local helicity distributions since the 
helicity-aligned and helicity-anti-aligned distributions have different momentum distri- 
butions. At large x, u -  and d-  can be neglected relative to u + and d +, and thus SU(6) 
is broken to SU(3)+× SU(3)-. Our model retains the SU(6) ratio P ( u + ) : P ( d  ÷) = 

3 A u : Aa = 5 : 1 at large x, so that we predict Fz(n)/Fz(p) ---> -~ as x ---> 1. The physical 
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Fig. 3. (a) Model prediction for the polarized helicity structure function of the proton compared with 
experiment. Full line: sum of all flavors; dashed: only up quarks; dotted: only down quarks; dash-dotted: only 
strange quarks. We have multiplied our prediction with a PQCD correction factor 1 - a s / r r  = 0.92. The data 
are from SLAC EMC (closed circles), EMC (closed squares), SMC (open squares) and SLAC E143 
(diamonds). (b) Same as (a) but for the neutron. The data are from the SLAC E142 experiment [2]. 

picture that emerges is that the struck quark carries all the helicity of the nucleon, and 
the spectators have S z = 0, although their total helicity is a combination of 0 and 1. This 
wavefunction is just a piece of the full SU(6) wavefunction, but since it is the piece that 
contains the u ÷ and d ÷, and since this part remains unchanged, the ratio P(u ÷) : P(d ÷) 
is still 5 : 1. 

Notice that the only empirical input into our model are the integrated values of the 
various flavors obtained from the proton data. The shape of the polarized distributions is 
essentially determined by the perturbative QCD constraints. The agreement with the 
shape of the SLAC and EMC experimental data for the proton is rather good (see Fig. 
3a) and could be further improved by taking into account PQCD evolution. 

We can also compare our model with the polarized neutron structure function 
extracted by the E142 from its polarized-electron-polarized-He 3 measurements (see Fig. 

3b). For the neutron we predict two new effects which are not present in the proton. 
First g~n tends to fall faster than g~P for large x. This is because as in the Carlitz-Kaur 
[38] and Farrar-Jackson [6] models, the helicity-aligned up quark dominates the proton 
distribution and the helicity down quark dominates the neutron structure function at 
large x. A related effect is that g~"(x) changes sign as a function of x. This is due to 
the fact that except for large x (where the helicity-aligned down quark dominates) g~n 

is dominated by the anti-aligned up quark distribution. Since fd dx  A u , ( x ) =  
f01 dx  Adp(x) < 0 [15], it is clear that g~n(x) must be negative at small x. 
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Fig. 4. Polarized helicity structure function of the deuteron. The data are from Ref. [1]. We have multiplied our 
prediction from the sum of proton and neutron contributions by a D-state depolarization factor 1 - ~too, with 

~o o = 0.058, and the PQCD correction factor 1 - o ts /~-  = 0.92. 

A comparison of our model with the recent SMC data for the polarized deuteron 
structure function gT(x) is shown in Fig. 4. The shape of the data appears to be 
consistent with our predictions, except possibly at the largest-x point where the model 
predicts too little asymmetry. To make this prediction, we have, as in Ref. [1], assumed 
that the deuteron structure function is half of the sum of the neutron and proton structure 
functions and included the D-state depolarization factor with D-state probability 0.058. 
The model then predicts the normalization 

f dx = ½f dx[ gr(x) + g;(x)] 

. . . .  ( 3 ~ ( A u + A d ) + ~ A s  1 1 3o)o) =0.038,  
7T 

compared to the SMC result 

f dx  g~(x )  =0.023 ___ 0.020(stat.) + 0.015(syst.). 

The distributions presented in this paper have applicability to any PQCD leading 
twist process which requires polarized quark and gluon distributions as input. Our input 
parameters have been adjusted to be compatible with global parameters of available 
current experiments. The values can be refined as further and more precise polarization 
experiments become available. A more precise parameterization should also take into 
account corrections from QCD evolution, although this effect is relatively unimportant 
for helicity-dependent distributions. Our central observation is that the shape of the 
distributions is almost completely predicted when one employs the constraints obtained 
from general QCD arguments at large x and small x. 

A remarkable prediction of our formalism are the very strong correlations between 
the parent hadron helicity and each of its valence quark, sea quark, and gluon 
constituents at large light-cone momentum fraction x. Although the total quark helicity 
content of the proton is small, we predict a strong positive correlation of the proton's 
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helicity with the helicity of its u quarks and gluon constituents. The model is also 
consistent with the assumption that the strange plus anti-strange quarks carry 3.5% of 
the proton's momentum and - 1 0 %  of its helicity. We also note that completely 
independent predictions based on QCD sum rules also imply that the three-valence-quark 
light-cone distribution amplitude has a very strong positive correlation at large x when 
the u quark and proton helicities are parallel [26]. 
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